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We derive the general form of the equation of state, in the fugacity format, for the two-
dimensional Coulomb gas. Our results are valid in the conducting phase of the Coulomb
gas, for temperatures above the Kosterlitz–Thouless transition. The derivation of the
equation of state is based on the knowledge of the general form of the short-distance
expansion of the correlation functions of the Coulomb gas. We explicitly compute the
expansion up to order O(ζ 6) in the activity ζ . Our results are in very good agreement
with Monte Carlo simulations at very low density.
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1. INTRODUCTION AND SUMMARY OF RESULTS

The system under consideration is a classical two component Coulomb gas com-
posed of positive and negative particles with charges +1 and −1. The particles
live in a two dimensional plane and they are small impenetrable disks of diameter
σ . The interaction between two charges q and q ′ at a distance r from each other is

v(r ) =
{−qq ′ ln r

L r > σ

+∞ r ≤ σ
(1.1)

where L is an arbitrary length scale fixing the zero of the potential. This is the two
dimensional version of the restricted primitive model for electrolytes. We shall
work using the grand canonical formalism with fugacity λ (dimensions length−2)
and inverse reduced temperature (coulombic coupling) β. The arbitrary length
scale L can be absorbed in the fugacity by defining the rescaled fugacity z = λLβ/2

which has dimensions length(β−4)/2. A dimensionless activity which will prove
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useful later can be defined as ζ = zσ (4−β)/2 = λσ 2(L/σ )β/2. Notice that if L is
chosen as L = σ , ζ = λσ 2 does not depend on β for fixed fugacity λ. We consider
only neutral configurations in the thermodynamic limit. Let n+ = n− be the density
of positive (negative) particles. The total number density is n = n+ + n− = 2n+.

In the low density limit nσ 2 → 0, there are two values of the coupling β of
special interest. At β = βKT = 4 the system undergoes the Kosterlitz–Thouless
transition of infinite order. (1) In the high temperature phase β < βKT, the system
is in a conducting phase with free ions that can screen external charges. The
correlations have an exponential decay and they satisfy several screening sum
rules, for instance the Stillinger-Lovett sum rule. (2) In the low temperature phase,
for β > βKT, the gas is in a dielectric phase where all charges are bound forming
dipolar pairs. The perfect screening sum rule is no longer satisfied.

The other value for β of interest is β = 2. For β < 2 the thermodynamic
quantities and correlation functions of the system have a finite value in the limit
of point particles σ = 0, while for 2 ≤ β < 4 at fixed fugacity z, the density, the
free energy and internal energy of the system diverge when σ → 0. This is due
to the collapse of pairs of point particles of opposite sign. On the other hand, it
is believed(3) that the truncated density correlation functions remain finite in the
limit σ → 0 when 2 ≤ β < 4.

For β < 2 and σ = 0, the equation of state for the pressure p of the plasma
has been known for a long time. (4) A simple scaling argument gives the volume
dependence of the free energy which leads to the pressure

βp =
(

1 − β

4

)
n. (1.2)

On the other hand the temperature dependence of the free energy is highly
non trivial. Only recently, exact results for the full thermodynamics of the two-
dimensional Coulomb gas, in the region β < 2 and σ = 0, have been obtained by
Šamaj and Travěnec. (5) These results have been obtained using the equivalence
between the classical Coulomb gas and the quantum sine-Gordon model. In two
dimensions this model is integrable, the free energy is known in terms of the
soliton mass, (6) and the relation between the soliton mass and the coupling of
the sine-Gordon model (i.e. the fugacity of the Coulomb gas) in the conformal
normalization has been found. (7) This gives the exact density–fugacity relationship
for the Coulomb gas, which allows one to find all the thermodynamic quantities
of the system. (5)

In the region 2 ≤ β < 4, since the density diverges in the limit nσ 2 → 0 for
fixed fugacity, it is more appropriate to study the fugacity expansion of the pressure,
rather than its density expansion. In Ref. 8, Gallavotti and Nicoló considered a
version of the Coulomb gas with a soft short-distance cutoff. They proved that a
Mayer series expansion of the pressure in integer powers of the fugacity have well
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defined coefficients up to order 2l for β > βl , where

βl = 4

(
1 − 1

2l

)
l = 1, 2, 3, . . . (1.3)

whereas higher order Mayer coefficients diverge. For β > 4 all Mayer coefficients
are finite, while for β < 2 all Mayer coefficients diverge.

Their findings lead them to conjecture that the plasma undergoes a series of
intermediate phase transitions at β = βl from the conducting phase at β = β1 = 2
up to the dielectric phase at β = β∞ = βKT = 4, as opposed to the traditional
Kosterlitz–Thouless scenario where the conducting-dielectric phase transition
takes place at β = 4.

Fisher et al. (9) denied this conjecture. They proposed an ansatz for the pres-
sure, which, in our notations (ζ = zσ (4−β)/2), reads

βp = bψ (β)z4/(4−β) [1 + e(β, ζ )] + 1

σ 2

∞∑
l=1

b̄2l (β)ζ 2l . (1.4)

In this ansatz, they conjectured that bψ (β) and b̄2l(β) are analytic for β < 4 and
that e(β, ζ ) is an analytic function of β for β < 4 and is also analytic in ζ for
ζ > 0. Furthermore, for nσ 2 → 0, at fixed z, e(β, zσ (4−β)/2) → 0.

While the ansatz (1.4) is fully compatible with Gallavotti and Nicoló findings,
these later conditions on bψ (β), b̄2l (β), and e(β, ζ ) imply that the pressure exhibits
no singularities up to β = 4, thus there are no intermediate phase transitions.

Using the exacts results for β < 2 and σ = 0, (5) Kalinay and Šamaj (3) devised
a method to obtain results for the thermodynamic properties of the Coulomb
gas in the low density limit nσ 2 � 1 up to β < 3. Their findings confirm the
form (1.4) of the ansatz proposed by Fisher et al. but the analytic structure of the
coefficients bψ (β) and b̄2l(β) is different. They have simple poles at β = βl but
they conjectured that a cancellation occurs. At β = βl , the exponent of the fugacity
in the nonanalytic part of βp is integer: 4/(4 − βl ) = 2l. Then it turns out that
residues of b̄2l (β) and bψ (β) at β = βl are opposite, thus giving no singularities for
the pressure at β = βl , confirming the absence of intermediate phase transitions.

The cancellation of singularities was verified in Ref. 3 at the first threshold
β = β1 = 2, and conjectured for the other thresholds. The aim of this work is to
extend further the analysis of Ref. 3. One important ingredient in the analysis of
Ref. 3 is the knowledge of the short-distance expansion of the density correlations
functions of the Coulomb gas, n(2)

+−(r ) and n(2)
++(r ). The cancellation at β = 2

was obtained in Ref. 3 using the fact that, at the lowest order when r → 0,
n(2)

+−(r ) − n(2)
++(r ) ∼ z2r−β .

In a recent work, (10) we presented the general framework to obtain higher
order terms of this expansion and explicitly computed the two next order terms of
the short-distance expansion of the correlation functions. Based on this previous
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analysis, (10) we will show that the function e(β, ζ ) in the ansatz (1.4) is nonanalytic
in ζ . Actually, we will show that the ansatz (1.4) should be generalized to

βp = 1

σ 2

∞∑
l = 1

b̄2l(β)ζ2l+ bψ (β)z
4

4 − β [1+ e1,0(β, ζ )] + 1

σ 2

∞∑
m = 0

∑∗
n
ζ

4m + βn2

4 − β ẽn,m(β,ζ ).

(1.5)

The sum
∑∗

n is for n ≥ 2 when m = 0 and for n ≥ 0 for m ≥ 1. For m = 1 the
function en,1(β, ζ ) = 0. The functions ẽn,m and e1,0 admit an expansion in integer
powers of ζ and ln ζ ,

ẽn,m(β, ζ ) =
∞∑

k=0

ẽn,m,k(β, ln ζ ) ζ 2k∗+n (1.6)

e1,0(β, ζ ) =
∞∑

k=0

e1,0,k(β, ln ζ ) ζ 2k+2 (1.7)

where k∗ = k + 1 for n = 0, 1 and k∗ = k for n ≥ 2. Notice that the lowest order
in this expansion is at least ζ 2. Thus, in the limit nσ 2 → 0, fixed z, and β < 4,
these terms are irrelevant in the sense that ẽn,m(β, zσ (4−β)/2) → 0.

The explicit calculation of bψ (β) and b̄2(β) was done in Ref. 3. Here we will
compute explicitly b̄4(β) and e1,0,0(β, ln ζ ). We will show that the cancellation
mechanism between bψ (β) and b̄2l (β) conjectured in Ref. 3 indeed takes place for
l = 2 at β = β2 = 3.

The outline of this paper is the following. In Section 2, we will recall some
basic facts about the exact results (5) for β < 2 and σ = 0 and about the general
strategy proposed by Šamaj and Kalinay(3) to obtain the thermodynamics of the
Coulomb gas for β > 2 in the low density limit. In Section 3, we prove that
the equation of state in the fugacity format has the form proposed in Eq. (1.5).
In Section 4, we compute explicitly the coefficients b̄4(β) and e1,0,0(β, ln ζ ) and
verify the cancellation mechanism between bψ (β) and b̄4(β) at β = β2 = 3. In
Section 5, from our analytical results for the equation of state, we compute the
internal energy and the specific heat of the two-dimensional Coulomb gas and we
compare our results with the ones obtained from Monte Carlo simulations. (11)

2. PREVIOUS RESULTS AND GENERAL STRATEGY

2.1. The Coulomb Gas of Point Charges for β < 2

For point particles, σ = 0 and β < 2, the classical Coulomb gas can be
mapped into the Euclidean quantum sine-Gordon model by carrying out a
Hubbard–Stratonovich transformation. The grand canonical partition function �
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of the Coulomb gas can be written as

� =
∫
Dφ exp[−S(z)]∫
Dφ exp[−S(0)]

(2.1)

with the sine-Gordon action

S(z) = −
∫

d2r

[
1

16π
φ(r)	φ(r) + 2z cos(bφ(r))

]
(2.2)

where we defined

b2 = β/4. (2.3)

Under this mapping, the bulk density and two-body densities of charges q = ±1
and q ′ = ±1 are given by(5,12)

nq = z〈eibqφ〉 (2.4)

and

n(2)
qq ′ (|r − r′|) = z2

〈
eibqφ(r)eibq ′φ(r′)〉 (2.5)

where the averages are taken with respect to the sine-Gordon action (2.2).
The complete mapping between the classical Coulomb gas and the sine-

Gordon model requires (5,13) to use the conformal normalization, (7) where, when
z → 0, the free fields are normalized according to 〈eibφ(0)e−ibφ(r)〉z=0 = r−β . Un-
der this conformal normalization, the expectation value of exponential fields is
known(14,15)

〈eibQφ〉 =
(

π z

γ (β/4)

) βQ2

4−β

exp[Ib(Q)] (2.6)

with γ (x) = �(x)/�(1 − x) where �(x) is the Euler Gamma function, and

Ib(Q) =
∫ ∞

0

dt

t

[
sinh2(2Qb2t)

2 sinh(b2t) sinh(t) cosh[(1 − b2)t]
− 2Q2b2e−2t

]
. (2.7)

This expression is valid for β|Q| < 2, otherwise the integral Ib(Q) diverges, but
it is possible to do an analytic continuation(16) of this formula for other values
of βQ using a reflection formula satisfied by 〈eibQφ〉 presented in Ref. 15. For
Q = ±1, the integral (2.7) can be computed explicitly and

〈eibφ〉 = 〈e−ibφ〉 = 2

(
π z

γ (β/4)

) β

4−β

(
�(ξ/2)

�( 1+ξ

2 )

)2
tan(πξ/2)

(4 − β)γ (β/4)
(2.8)

where ξ = β/(4 − β).
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Equation (2.4) combined with (2.8) gives the exact density–fugacity relation-
ship (5)

n = n[z, 0] = z4/(4−β) 4

4 − β
bψ (β) (2.9)

with

bψ (β) = π
β

4−β

(γ (β/4))
4

4−β

⎛
⎝ �(ξ/2)

�
(

1+ξ

2

)
⎞
⎠

2

tan(πξ/2). (2.10)

We introduced the notation n[z, σ ] to indicate that the density is a function of z
and the hard core diameter σ . Here σ = 0, but we shall use that notation later on.

Equation (2.9) together with the thermodynamic relation n = z∂(βp)/∂z
leads to

βp = bψ (β)z
4

4−β . (2.11)

This is the exact pressure–fugacity relationship for point-like particles when β <

2. Notice that both (1.4) and (1.5) are compatible with (2.11) when σ = 0 and
β < 2.

At β = 2, the density diverges, as expected, due to the collapse phenomenon.
As already noticed in Ref. 3, a naive analytic continuation of (2.9) for β ≥ 2
does not give the correct density–fugacity relationship beyond the collapse: the
function n[z, 0] diverges at the thresholds β = βl and can become negative, it
cannot represent the density in the region 2 ≤ β < 4.

2.2. The Coulomb Gas beyond β = 2 in the Low Density Limit

The method(3) to study the properties of the Coulomb gas for β > 2 and
σ �= 0 when n2σ � 1 is based on the electroneutrality sum rule

n+ =
∫

R2

[
n(2)

+−(r ) − n(2)
++(r )

]
dr (2.12)

It is believed that the truncated correlation functions n(2)T
qq ′ (r ; z, σ ) are well defined

for σ = 0 up to β < 4. Assuming that the difference n(2)T
qq ′ (r ; z, σ ) − n(2)T

qq ′ (r ; z, 0)
is negligible for r > σ , and using the electroneutrality sum rule (2.12), Kalinay
and Šamaj (3) proposed that the density n[z, σ ] for the Coulomb gas with hard core
σ is given by

n[z, σ ] = n[z, 0] − 4π

∫ σ

0

[
n(2)

+−(r ; z, 0) − n(2)
++(r ; z, 0)

]
r dr (2.13)

in the limit nσ 2 � 1.
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Using the dominant order term in the small-r expansion of the correlation
functions, n(2)

+−(r ) − n(2)
++(r ) ∼ z2r−β , Kalinay and Šamaj (3) obtained the first cor-

rection

n[z, σ ] = n[z, 0] − 4π z2 σ 2−β

2 − β
(2.14)

and they showed that it cancels the pole at β = 2 from n[z, 0].

3. THE EQUATION OF STATE IN THE FUGACITY FORMAT

3.1. The Short Distance Expansion of Correlation Functions

and the Operator Product Expansion

To proceed further with the program proposed by Kalinay and Šamaj, (3) we
need to compute the higher order terms of the short-distance expansion of the
correlation functions. In a previous work, (10) we showed how the operator product
expansion for the exponential fields in the sine-Gordon model can be used to
obtain the short distance expansion of the correlation functions of the Coulomb
gas. Let us recall and extend some of the results from Ref. 10.

The operator product expansion for the exponential fields of the sine-Gordon
models reads (17)

〈eibQ1φ(0)eibQ2φ(r)〉 =
n=+∞∑
n=−∞

[
Cn,0

Q1 Q2
(r )〈eib(Q1+Q2+n)φ〉

+ Cn,2
Q1 Q2

(r )
〈
(∂φ)2(∂̄φ)2eib(Q1+Q2+n)φ

〉 + · · · ] (3.1)

where the dots denote subdominant contributions from higher order descen-
dant fields

∏
i ∂mi φ

∏
j ∂̄n j φ eib(Q1+Q2+n)φ , where only the fields with

∑
i mi =∑

j n j = m have non vanishing expectation value. The level m = 1 field has zero

expectation value because it is a total derivative. (17)

The functions Cn,m
Q1 Q2

(r ) of the operator product expansion have the following
form(17)

Cn,m
Q1 Q2

(r ) = z|n|rm+βQ1 Q2+nβ(Q1+Q2)+2|n|(1− β

4 )+n2β/2 f n,m
Q1 Q2

(z2r4−β) (3.2)

where each f n,m
Q1 Q2

admit a power series expansion of the form

f n,m
Q1 Q2

(x) =
∞∑

k=0

f n,m
k (Q1, Q2)xk . (3.3)

The connexion of the operator product expansion with the Coulomb gas is clear by
noticing that 〈eib(Q1+Q2+n)φ〉 is closely related to the excess chemical potential of an
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external charge Q1 + Q2 + n introduced in the plasma. (18) Also, the coefficients
f n,0
k (Q1, Q2) are expressible in terms (n + 2k)-fold Coulomb type integrals: they

are the partition functions of a system with two fixed point charges Q1 and Q2

separated by a distance 1 and with n (positive for n > 0, negative for n < 0) point
particles and k pairs of positive and negative point particles approaching the fixed
particles. For explicit expressions of some of these coefficients see Refs. 10, 17.

A few technical details, explained in greater detail in Ref. 10, should be kept
in mind when using the expansion (3.1) to compute the correlation functions of the
Coulomb gas. First, the (n + 2k)-fold Coulomb type integrals in the coefficients
f n,m
k (Q1, Q2) are defined for a certain range of values of Q1, Q2 and β since

we are dealing with point particles, in order to avoid the collapse. Beyond those
ranges an analytic continuation should be used.

Second, for certain values of Q1, Q2 and β different terms in the expan-
sion (3.1) can become of the same order. When this occurs the coefficient of each
term usually has a pole, but adding all contributions of the same power in r and
taking the appropriate limit gives a finite result and logarithmic terms ln(zr (4−β)/2)
appear. One important case where this happens is in the computation of n(2)

+−. As
clearly seen from Eq. (3.1), when Q1 = −Q2 = 1, the terms for n and −n are of
the same order in r . One consequence is the appearance of ln(zr (4−β)/2) terms in
the expansion of n(2)

+−(r ) coming from the contributions of terms |n| ≥ 1 in (3.1).
However, for n = 0, the corresponding terms in Eq. (3.1) do not have a logarithmic
correction. For details see Ref. 10. This last remark is important for the following
analysis, and, as we shall see, it is the reason why the first term of the equation of
state (1.5) is an analytic series in the fugacity.

Using (2.5) and the operator product expansion (3.1), including the contribu-
tions of all descendant fields, we find that the general form of the short-distance
expansion of the correlation functions is

n(2)
++(r ) =

n=+∞∑
n=−∞

+∞∑
m=0

+∞∑
k=0

n++
n,m,k

1

r4

(
zr

4−β

2
) β(2+n)2+4m

4−β
(
zr

4−β

2
)2k+2+|n|

(3.4)

n(2)
+−(r ) =

n=+∞∑
n=−∞

+∞∑
m=0

+∞∑
k=0

n+−
n,m,k

1

r4

(
zr

4−β

2
) βn2+4m

4−β
(
zr

4−β

2
)2k+2+|n|

(3.5)

The indexes used are m for the order of the descendant field (remember that the
term for m = 1 is zero), n for the number of particles of sign sgn(n) added and k
for the number of pair of positive and negative particles added. The coefficients
n+−

n,m,k and n++
n,m,k depend on β and eventually on ln(zr (4−β)/2), except those for

neutral configurations n+−
0,0,k and n++

−2,0,k which depend only on β as explained
above.
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3.2. The Fugacity Expansions of the Density and the Pressure

Substituting (3.4) and (3.5) into (2.13) leads to the following form for the
density

n[z, σ ] = n[z, 0] +
+∞∑

n=−∞

+∞∑
m=0

+∞∑
k=0

1

σ 2

[
c+−

n,m,kζ
4m+βn2

4−β + c++
n,m,kζ

4m+β(n+2)2

4−β

]
ζ 2k+2+|n|

(3.6)
with n[z, 0] given by Eqs. (2.9) and (2.10) and ζ = zσ (4−β)/2. Finally, using
n = z∂(βp)/∂z, the fugacity expansion of pressure is of the form

βp = bψ (β)z4/(4−β)

+
∞∑

n=−∞

+∞∑
m=0

+∞∑
k=0

1

σ 2
ζ

4m+βn2

4−β

[
p+−

n,m,kζ
2k+2+|n| + p++

n−2,m,kζ
2k+2+|n−2|] (3.7)

Notice that the terms corresponding to m = 0 and n = 0 are analytic in z. These,
together with the terms m = 0 and n = 1, reproduce the ansatz (1.4) from Fisher
et al. (9) Writing these terms apart in (3.7) the pressure–fugacity relationship can
finally be written as announced in the introduction

βp = 1

σ 2

∞∑
l=1

b̄2l(β)ζ2l + bψ (β)z
4

4−β [1+ e1,0(β, ζ )]+ 1

σ 2

∞∑
m=0

∑∗
n
ζ

4m+βn2

4−β ẽn,m(β,ζ ).

(3.8)
The sum

∑∗
n does not contains the terms m = 0 and n = 0, 1 since they are

explicitly written apart: the sum is for n ≥ 2 when m = 0 and for n ≥ 0 for
m ≥ 1.

The functions ẽn,m(β, ζ ) and e1,0(β, ζ ) admit a power series expansion in
terms of ζ and ln ζ given in Eqs. (1.6) and (1.7). They are at least of order
ζ 2 = z2σ (4−β), so they vanish in the limit nσ 2 → 0 for fixed z and β < 4: they
are irrelevant. On the other hand, in the analytic part of βp as a series in ζ (first
sum in (3.8)), the l-th term becomes relevant for β > βl = 4[1 − (1/(2l))], i.e. it
diverges in the limit nσ 2 → 0.

At β = βl , the term z4/(4−β)bψ (β) has a pole, as seen from (2.10), but it is
expected that the coefficient σ−2b̄2l (β)ζ 2l , which becomes relevant at that point,
also has a pole and cancels the divergence from z4/(4−β)bψ (β). This was checked
at β = β1 = 2 for the first term l = 1 in Ref. 3. In the next section we check that
this cancellation also takes place at β = β2 = 3.

4. EXPLICIT CALCULATIONS

4.1. The Equation of State in the Fugacity Format

In Ref. 10 we computed explicitly the short-distance expansion of the corre-
lation functions (3.4) and (3.5) up to order r8−3β , that is, we computed the terms
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corresponding to (n, m, k) = (−2, 0, 0) and (n, m, k) = (−1, 0, 0) for n(2)
++, and

(n, m, k) = (0, 0, 0), (n, m, k) = (0, 0, 1) and (n, m, k) = (±1, 0, 0) for n(2)
+−. The

neutral configurations: for n(2)
++, (n, m, k) = (−2, 0, 0) gives the order r4−2β , and

for n(2)
+−, (n, m, k) = (0, 0, 0) gives the order r−β , and (n, m, k) = (0, 0, 1) the

order r4−2β . The configurations with at most one charge ±1 give the order r2−β

[(n, m, k) = (−1, 0, 0) for n(2)
++ and (n, m, k) = (±1, 0, 0) for n(2)

+−]. Explicitly,

n(2)
+−(r ) = z2r−β + z3〈eibφ〉r2−β

(
ñ+−

3 − πβ2 ln

[(
π z

γ (β/4)

) 2
4−β

r

])

+ z4r4−2β ñ+−
4 + O(r4, r8−3β, r6−2β ) (4.1)

n(2)
++(r ) = z3〈eibφ〉r2−β ñ++

3 + z4r4−2β ñ++
4 + O(r4, r8−3β, r6−2β ) (4.2)

with 〈eibφ〉 given by Eq. (2.8), and

ñ+−
3 = −πβ2

4

[
4

β
I ′
b(1) − 4 + 4C

+ψ

(
β

2

)
+ ψ

(
− β

2

)
+ ψ

(
1 − β

2

)
+ ψ

(
1 + β

2

)]
(4.3)

ñ+−
4 = J (β,−β, β) (4.4)

ñ++
3 = πγ

(
1 − β

2

)2

γ (β − 1) (4.5)

ñ++
4 = − 4π2

(2 − β)2
γ

(
1 − β

4

)3

γ

(
− 1 + 3β

4

)
(4.6)

where ψ(x) = d ln �(x)/dx is the digamma function and C = −ψ(1) is the
Euler constant. The definition and some properties of the functions I ′

b(1) =
∂ Ib(Q)/∂ Q|Q=1 and J (β,−β, β) are presented in the appendix.

The use of (2.13) leads to the density

n[z, σ ] = z〈eibφ〉
{

2−4π z2σ 4−β

4 − β

(
ñ+−

3 −ñ++
3 − πβ2

4−β

[
ln

[(
π z

γ (β/4)

)2

σ 4−β

]
−1

])}

− 4π z2σ 2−β

2 − β
− 2π z4σ 2(3−β)

3 − β
(ñ+−

4 − ñ++
4 ) + O(σ 6, σ 10−3β, σ 8−2β )

(4.7)
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Integrating the thermodynamic relation n = z∂(βp)/∂z, we find the equation
of state in the fugacity format

βp = bψ (β)z4/(4−β) [1 + e(β, ζ )] + 1

σ 2

[ −2π

2 − β
ζ 2 + b̄4(β)ζ 4 + O(ζ 6)

]
(4.8)

with

b̄4(β) = − π

2(3 − β)

[
J (β,−β, β) + 4π2

(2 − β)2
γ

(
1 − β

4

)3

γ

(
− 1 + 3β

4

)]

(4.9)

and

e(β, ζ ) = − 4πζ 2

(4 − β)2(6 − β)

{
(4 − β)

(−πβ2

4

[
4

β
I ′
b(1) − 4 + 4C + ψ

(
β

2

)

+ψ

(
− β

2

)
+ ψ

(
1 − β

2

)
+ ψ

(
1 + β

2

)]
− πγ

(
1 − β

2

)2

γ (β − 1)

)

−πβ2

[
2(β − 5)

6 − β
+ ln

(
πζ

γ (β/4)

)2]}
+ o(ζ 2) (4.10)

We have verified that the function e(β, zσ (4−β)/2) → 0 when nσ 2 → 0 at fixed z.

4.2. Cancellations at β = 3 for the Relevant Terms

Near β = 3, the contribution to βp from n[z, 0] is

bψ (β)z4/(4−β) ∼
β → 3

π3

8
γ (1/4)4z4 1

β − 3
(4.11)

On the other hand, in the appendix it is shown that

b̄4(β) ∼
β → 3

−π3

8
γ (1/4)4 1

β − 3
. (4.12)

Thus the divergences of each term at β = 3 cancel each other yielding a finite
result for the pressure. The cancellation mechanism conjectured in Ref. 3, indeed
take place at β = 3.

4.3. Cancellations at β = 2 for Irrelevant Terms

Actually a more complex mechanism of cancellations of divergences ap-
pears to take place, at β = βl , when the generically nonanalytic contributions
in z4/(4−β) become analytic z2l , also with the irrelevant terms (terms that vanish
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when nσ 2 → 0). To illustrate this, notice that at β = 2, b̄4(β)ζ 4/σ 2 has a pole,
but so does the term bψ (β)z4/(4−β)e(β, ζ ) which is also of order ζ 4 at β = 2. The
finiteness of the correlation functions in the region up to β < 4 (in particular at
β = 2 for the present case) ensures that both divergent contributions cancel each
other.

The calculations of the short distance expansion of the correlation functions
at β = 2 has been done in Ref. 10. Using the results from Ref. 10, in particular the
results from Appendices A and B of Ref. 10, it is easy to check that the contribution
of terms of order ζ 4 in the pressure are finite:

βp =
β = 2

−π z2 [−1 + 2C + 2 ln(π zσ )]

− π3z4σ 2

4
{−3 − 4(C + ln π )[1 + 2(C + ln π )]

+ 4 [−1 + 2 ln(zσ ) + 4(ln π + C)] ln(zσ )} + o(z4σ 2) (4.13)

We have also written the relevant contribution (nonvanishing when σ → 0) which
was computed in Ref. 3.

If the conjecture that the truncated correlation functions are finite up to β = 4
is true, this cancellation mechanism of irrelevant terms should take place at other
values of β where the coefficients in Eq. (3.8) diverge. For instance, in (4.8) the
product bψ (β)e(β, ζ ) has a pole at β = 3. At this value of β, the nonanalytic
contribution to the pressure bψ (β)e(β, ζ )z4/(4−β) becomes analytic of order ζ 6.
The pole at β = 3 of bψ (β)e(β, ζ ) should be canceled with a similar diverging
term from b̄6(β)ζ 6/σ 2, which we have not computed here.

5. COMPARISON WITH MONTE CARLO SIMULATIONS

In the canonical format, the excess dimensionless free energy per particle is
given by

f (n, β) = −βp

n
+ ln ζ (5.1)

where ζ should be expressed in terms of the density n by inverting the relation (3.6).
The excess internal energy per particle uexc and the excess specific heat at constant
volume per particle cexc

V can be obtained as

uexc = ∂ f (n, β)

∂β
(5.2)

and

cexc
V = −β2 ∂2 f (n, β)

∂β2
. (5.3)
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Fig. 1. The internal energy uexc as a function of β. The lines are our analytical results and the bars are
the Monte Carlo simulation results. For η = 5 · 10−4 the dashed line shows the results obtained with
the full expression (4.8), while the dash-dot line shows the results obtained from (5.4).

Using the expressions (4.7) and (4.8) for the density and the pressure, accurate to
order O(ζ 6), obtained in the previous section, we numerically inverted the density–
fugacity relationship (4.7) and computed the internal energy and specific heat for
two low density packing fractions η = πnσ 2/4, η = 5 · 10−4 and η = 5 · 10−3.
In Ref. 11, Monte Carlo simulations of the two-dimensional Coulomb gas were
performed for these two packing fraction values.

Our analytical results are compared to the Monte Carlo simulation ones
in Figs. 1 and 2. In Fig. 1, we plot the internal energy uexc as a function of
the inverse temperature β. For η = 5 · 10−4, we show two curves. The dashed
line corresponds to the results obtained from Eq. (4.8). As it was discussed in
the preceding section, the term bψ (β)e(β, ζ ) from Eq. (4.8) has a pole at β = 3,
which should be canceled with the next order term b̄6(β)ζ 6/σ 2 which has not been
computed. For this reason, the comparison with Monte Carlo results can only be
done for β < 3. However, since bψ (β)e(β, ζ ) vanishes when η → 0, we decided to
compare the Monte Carlo results with those obtained from our analytical formulas
by omitting this “irrelevant” term. This is shown in Fig. 1 with the dot-dash line.
Explicitly, this last curve is obtained by approximating the pressure by

βp = bψ (β)z4/(4−β) + 1

σ 2

[ −2π

2 − β
ζ 2 + b̄4(β)ζ 4

]
(5.4)

instead of using Equation (4.8). Eq. (5.4) can be used up to the next pole at
β = β3 = 10/3. For very low volume fractions, η = 5 · 10−4, the agreement
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Fig. 2. The specific heat cexc
V as a function of β. The lines are our analytical results and the bars are

the Monte Carlo simulation results.

with Monte Carlo simulations is very good, both using the correct formula (4.8),
for β < 3, or the “truncated” one (5.4), for 2 < β < 10/3. For higher volume
fractions, η = 5 · 10−3, the agreement is still very good when using the complete
formula (4.8). On the other hand, the “truncated” formula Eq. (5.4), does not give
a good agreement (curve not shown) as it can expected because the omitted term
becomes important at high volume fractions.

In Fig. 2, we plot the specific heat cexc
V as a function of β. The agreement with

Monte Carlo simulations is fairly good, even at the relatively high volume fraction
η = 5 · 10−3. In any case, the agreement with the simulations is much better than
the one obtained with only the first order term b̄2(β)ζ 2/σ 2 in the pressure, shown
in Fig. 3 of Ref. 3, as expected.

6. CONCLUSION

Using the exact results for the thermodynamics of the two-dimensional
Coulomb gas of point particles for β < 2, (5) the short-distance expansion of
the density correlations functions, (10) and the program proposed by Kalinay and
Šamaj, (3) we have derived the general form of the equation of state in the fugacity
format (1.5), for the two-dimensional Coulomb gas composed of small core diam-
eter σ particles and for β < 4. We explicitly computed the second corrections due
to the hard core, up to terms O(ζ 6) in the activity ζ , the first corrections (order
ζ 2) were computed in Ref. 3.
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The general form of the equation of state (1.5) is compatible with the fact
that an analytic expansion of the pressure in powers of the fugacity have finite
Mayer coefficients up to order 2l for β > βl , confirming the findings of Gallavotti
and Nicoló. (8) However, the explicit calculations we performed show that the
pressure does not have any singularities at β = β1 = 2 nor at β = β2 = 3, con-
trary to the conjecture of a series of intermediate phase transitions proposed by
Gallavotti and Nicoló, (8) and supporting the arguments of Fisher et al. (9) against
this conjecture. But the general form for the equation of state (1.5) we found
is more complex than the ansatz (1.4) proposed by Fisher et al.. (9) Finally, we
compared our results against Monte Carlo simulations results and we found good
agreement.

APPENDIX A: TECHNICAL DETAILS

The function I ′
b(1) appearing in Eq. (4.3) is defined as I ′

b(1) =
∂ Ib(Q)/∂ Q|Q=1 with Ib(Q) given by Eq (2.7). Explicitly,

I ′
b(1) = β

4

∫ ∞

0

dt

t

[
−4e−2t + t sinh(βt)

sinh t cosh[
(
1 − β

4

)
t] sinh(βt/4)

]
. (A.1)

This expression converges only for β < 2. To use it beyond β > 2 it is useful to
write it as

4

β
I ′
b(1) = I1(β) + I2(β) (A.2)

where

I1(β) = 2
∫ ∞

0

(
−e−2t

t
+ cosh(βt/4)

sinh t cosh[
(
1 − β

4

)
t]

)
dt (A.3)

I2(β) = 2
∫ ∞

0

(
−e−2t

t
+ cosh(3βt/4)

sinh t cosh[
(
1 − β

4

)
t]

)
dt (A.4)

The first integral, I1(β), is well defined for β < 4. The second one, I2(β), is
defined for β < 2, but it can be analytically continued up to β < 10/3, by writing
it as

I2(β) = 4

2 − β
+ 8

3β − 8
+ 2

3 − β
+ 8

5β − 16

+ 2
∫ ∞

0

[
−e−2t

t
+ 2

e−t(4+β)/2 − e−3t(4−β) + e−t(4−β) + e−t(10−3β)

(1 − e−2t )
(
1 + e−2t(1− β

4 )
)

]
dt.

(A.5)
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The function J (β,−β, β) appearing in Eq. (4.4) is a special case of the
integral

J (βQ,−βQ, β) =
∫

d2x d2 y
|x |βQ |1 − y|βQ

|y|βQ |1 − x |βQ |x − y|β . (A.6)

for Q = 1. Using the results from Ref. 19, in the appendix B of Ref. 10 we showed
that

J (β,−β, β) = [
s(β/2)J+

1 + s(β)J+
2

]2 + [
s(β/2)J+

2

]2
(A.7)

with

J+
1 = �

(
1 − β

2

)3
�

(
2 − β

2

)
�(2 − β)�(3 − β)

3 F2

(
1 − β

2
, 2 − β

2
,−β

2
; 2 − β, 3 − β; 1

)
(A.8)

J+
2 = �

(
1 − β

2

)
�

(
2 − β

2

)
�

(
1 + β

2

)2

2
3 F2

(
2 − β

2
, 1 + β

2
,
β

2
; 2, 3; 1

)
. (A.9)

where we used the notation s(x) = sin(πx) and where 3 F2(a1, a2, a3; b1, b2; z) =∑∞
k=0

(a1)k (a2)k (a3)k

(b1)k (b2)k k! zk is a generalized hypergeometric function, and (a)k =
�(a + k)/�(a) is the Pochhammer symbol.

In the appendix B of Ref. 10 we proved that near β = 2,

J (β,−β, β) =
β → 2

(2π )2

[
1

(β − 2)2
+ 1

β − 2
+ 1

]
+ O(β − 2). (A.10)

In order to verify the cancellation mechanism at β = 3 presented in Sec-
tion 4.2, we need the value of J (β,−β, β) at β = 3.

For this purpose, it is convenient to write J+
1 as

J+
1 = �

(
1 − β

2

)3
�

(
2 − β

2

)
�(4 − β)2

[
(2 − β)(3 − β)2

+
(

1 − β

2

)(
2 − β

2

)
(−β/2)(3 − β) + S(β)

]
(A.11)

where

S(β) =
+∞∑
k=2

(
1 − β

2

)
k

(
2 − β

2

)
k
(−β/2)k

(4 − β)k−1(4 − β)k−2k!
. (A.12)

At β = 3, we have S(3) = −γ (1/4)2/(16π ). Then at β = 3,

J+
1 =

β = 3

π

2
γ (1/4)2. (A.13)
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On the other hand J+
2 can be evaluated directly at β = 3, using(20)

3 F2(1/2, 5/2, 3/2; 2, 3; 1) = 8

9π
γ (1/4)2. (A.14)

We find that J+
2 = −J+

1 at β = 3. This yields

J (3,−3, 3) = π2

2
γ (1/4)4. (A.15)

This result, combined with the explicit expression (4.9) for b̄4(β), gives the be-
havior (4.12) for b̄4(β) near β = 3.
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